
Chapter 3
Solving problems by searching



Search

We will consider the problem of designing goal-based 
agents in observable, deterministic, discrete, known
environments 

The solution is a fixed sequence of actions

 Search is the process of looking for the sequence of 
actions that reaches the goal

Once the agent begins executing the search solution, it can 
ignore its percepts (open-loop system)

2



Search problem components
• Initial state

• Actions

• Transition model
– What is the result of 

performing a given action 
in a given state?

• Goal state

• Path cost
– Assume that it is a sum of 

nonnegative step costs

• The optimal solution is the sequence of actions that gives the 
lowest path cost for reaching the goal

Initial
state

Goal 
state

3



Example: Romania

• Initial state
– Arad

• Actions
– Go from one city to another

• Transition model
– If you go from city A to 

city B, you end up in city B

• Goal state
– Bucharest

• Path cost
– Sum of edge costs

• On vacation in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

4



State space

• The initial state, actions, and transition model 
define the state space of the problem

– The set of all states reachable from initial state by any 
sequence of actions

– Can be represented as a directed graph where the 
nodes are states and links between nodes are actions

• What is the state space for the Romania problem?

5



Example: Vacuum world

• States

– Agent location and dirt location

– How many possible states?

– What if there are n possible locations?

• Actions

– Left, right, suck

• Transition model

6



Vacuum world state space graph

7



Example: The 8-puzzle
• States

– Locations of tiles 

• 8-puzzle: 181,440 states

• 15-puzzle: 1.3 trillion states

• 24-puzzle: 1025 states

• Actions

– Move blank left, right, up, down 

• Path cost 

– 1 per move

• Optimal solution of n-Puzzle is NP-hard
8



Example: Robot motion planning

• States
– Real-valued coordinates of robot joint angles

• Actions
– Continuous motions of robot joints

• Goal state
– Desired final configuration (e.g., object is grasped)

• Path cost
– Time to execute, smoothness of path, etc.

9



Other Real-World Examples

• Routing

• Touring

• VLSI layout

• Assembly sequencing

• Protein design

10



Tree Search

Let’s begin at the start node and expand it by 
making a list of all possible successor states

Maintain a fringe or a list of unexpanded states

At each step, pick a state from the fringe to expand 

Keep going until you reach the goal state

Try to expand as few states as possible

11



Search tree

• “What if” tree of possible actions 
and outcomes

• The root node corresponds to the 
starting state

• The children of a node 
correspond to the successor 
states of that node’s state

• A path through the tree 
corresponds to a sequence of 
actions
– A solution is a path ending in the 

goal state

… … …

…

Starting 
state

Successor 
state

Action

Goal state

12



Tree Search Algorithm Outline

• Initialize the fringe using the starting state

• While the fringe is not empty

– Choose a fringe node to expand according to search strategy

– If the node contains the goal state, return solution

– Else expand the node and add its children to the fringe

13



Tree search example

14



Tree search example

15



Tree search example

Fringe

16



Search strategies

• A search strategy is defined by picking the order of node 
expansion

• Strategies are evaluated along the following dimensions:
– Completeness: does it always find a solution if one exists?

– Optimality: does it always find a least-cost solution?

– Time complexity: number of nodes generated

– Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of 
– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum length of any path in the state space (may be infinite)

17



Uninformed search strategies

• Uninformed search strategies use only the 
information available in the problem definition

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Iterative deepening search

18



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

19



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

20



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

21



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

22



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

23



Properties of breadth-first search

• Complete? 
Yes (if branching factor b is finite)

• Optimal?
Yes – if cost = 1 per step

• Time?
Number of nodes in a b-ary tree of depth d: O(bd)

(d is the depth of the optimal solution)

• Space?
O(bd)

• Space is the bigger problem (more than time)
24



Uniform-cost search
• Expand least-cost unexpanded node
• Implementation: fringe is a queue ordered by path cost (priority 

queue)
• Equivalent to breadth-first if step costs all equal

• Complete?
Yes, if step cost is greater than some positive constant ε

• Optimal?
Yes – nodes expanded in increasing order of path cost

• Time?
Number of nodes with path cost ≤ cost of optimal solution (C*), O(bC*/ ε)
This can be greater than O(bd): the search can explore long paths consisting 

of small steps before exploring shorter paths consisting of larger steps 

• Space?
O(bC*/ ε)

25



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

26



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

27



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

28



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

29



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

30



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

31



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

32



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

33



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

34



Properties of depth-first search

• Complete?
Fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
 complete in finite spaces

• Optimal?
No – returns the first solution it finds

• Time?
Could be the time to reach a solution at maximum depth m: O(bm)

Terrible if m is much larger than d
But if there are lots of solutions, may be much faster than BFS

• Space?
O(bm), i.e., linear space!

35



Iterative deepening search

• Use DFS as a subroutine

1. Check the root

2. Do a DFS searching for a path of length 1

3. If there is no path of length 1, do a DFS searching 
for a path of length 2

4. If there is no path of length 2, do a DFS searching 
for a path of length 3…

36



Iterative deepening search

37



Iterative deepening search

38



Iterative deepening search

39



Iterative deepening search

40



Properties of iterative deepening 
search

• Complete?

Yes

• Optimal?

Yes, if step cost = 1

• Time?

(d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space?

O(bd)

41



Informed search

• Idea: give the algorithm “hints” about the 
desirability of different states 

– Use an evaluation function to rank nodes and 
select the most promising one for expansion

• Greedy best-first search

• A* search

42



Heuristic function

• Heuristic function h(n) estimates the cost of 
reaching goal from node n

• Example:
Start state

Goal state
43



Heuristic for the Romania problem

44



Greedy best-first search

• Expand the node that has the lowest value of 
the heuristic function h(n)

45



Greedy best-first search example

46



Greedy best-first search example

47



Greedy best-first search example

48



Greedy best-first search example

49



Properties of greedy best-first search

• Complete?

No – can get stuck in loops

start

goal

50



Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal?

No

51



Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal?

No

• Time?

Worst case: O(bm)

Best case: O(bd) – If h(n) is 100% accurate

• Space?

Worst case: O(bm)

52



A* search

• Idea: avoid expanding paths that are already expensive

• The evaluation function f(n) is the estimated total cost 
of the path through node n to the goal:

f(n) = g(n) + h(n)

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

53



A* search example

54



A* search example

55



A* search example

56



A* search example

57



A* search example

58



A* search example

59



Properties of A*

• Complete?

Yes – unless there are infinitely many nodes with f(n) ≤ C*

• Optimal?

Yes

• Time?

Number of nodes for which f(n) ≤ C* (exponential)

• Space?

Exponential

60



Admissible heuristics

• A heuristic h(n) is admissible if for every node n, h(n)
≤ h*(n), where h*(n) is the true cost to reach the goal 
state from n

• An admissible heuristic never overestimates the cost 
to reach the goal, i.e., it is optimistic

• Example: straight line distance never overestimates 
the actual road distance

• Theorem: If h(n) is admissible, A* is optimal

61



Designing heuristic functions

• Heuristics for the 8-puzzle

h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance (number of squares from 
desired location of each tile)

h1(start) = 8

h2(start) = 3+1+2+2+2+3+3+2 = 18

• Are h1 and h2 admissible? 62



Comparison of search strategies

Algorithm Complete? Optimal?
Time 

complexity
Space 

complexity

BFS

UCS

DFS

IDS

Greedy

A*

Yes

Yes

No

Yes

If all step 
costs are equal

If all step 
costs are equal

Yes

No

O(bd)

Number of nodes with g(n) ≤ C*

O(bm)

O(bd)

O(bd)

O(bm)

O(bd)

No No
Worst case: O(bm)

Yes Yes

Best case: O(bd)

Number of nodes with g(n)+h(n) ≤ C*
63


