
Chapter 3
Solving problems by searching



Search

We will consider the problem of designing goal-based 
agents in observable, deterministic, discrete, known
environments 

The solution is a fixed sequence of actions

 Search is the process of looking for the sequence of 
actions that reaches the goal

Once the agent begins executing the search solution, it can 
ignore its percepts (open-loop system)

2



Search problem components
• Initial state

• Actions

• Transition model
– What is the result of 

performing a given action 
in a given state?

• Goal state

• Path cost
– Assume that it is a sum of 

nonnegative step costs

• The optimal solution is the sequence of actions that gives the 
lowest path cost for reaching the goal

Initial
state

Goal 
state

3



Example: Romania

• Initial state
– Arad

• Actions
– Go from one city to another

• Transition model
– If you go from city A to 

city B, you end up in city B

• Goal state
– Bucharest

• Path cost
– Sum of edge costs

• On vacation in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

4



State space

• The initial state, actions, and transition model 
define the state space of the problem

– The set of all states reachable from initial state by any 
sequence of actions

– Can be represented as a directed graph where the 
nodes are states and links between nodes are actions

• What is the state space for the Romania problem?

5



Example: Vacuum world

• States

– Agent location and dirt location

– How many possible states?

– What if there are n possible locations?

• Actions

– Left, right, suck

• Transition model

6



Vacuum world state space graph

7



Example: The 8-puzzle
• States

– Locations of tiles 

• 8-puzzle: 181,440 states

• 15-puzzle: 1.3 trillion states

• 24-puzzle: 1025 states

• Actions

– Move blank left, right, up, down 

• Path cost 

– 1 per move

• Optimal solution of n-Puzzle is NP-hard
8



Example: Robot motion planning

• States
– Real-valued coordinates of robot joint angles

• Actions
– Continuous motions of robot joints

• Goal state
– Desired final configuration (e.g., object is grasped)

• Path cost
– Time to execute, smoothness of path, etc.

9



Other Real-World Examples

• Routing

• Touring

• VLSI layout

• Assembly sequencing

• Protein design

10



Tree Search

Let’s begin at the start node and expand it by 
making a list of all possible successor states

Maintain a fringe or a list of unexpanded states

At each step, pick a state from the fringe to expand 

Keep going until you reach the goal state

Try to expand as few states as possible

11



Search tree

• “What if” tree of possible actions 
and outcomes

• The root node corresponds to the 
starting state

• The children of a node 
correspond to the successor 
states of that node’s state

• A path through the tree 
corresponds to a sequence of 
actions
– A solution is a path ending in the 

goal state

… … …

…

Starting 
state

Successor 
state

Action

Goal state

12



Tree Search Algorithm Outline

• Initialize the fringe using the starting state

• While the fringe is not empty

– Choose a fringe node to expand according to search strategy

– If the node contains the goal state, return solution

– Else expand the node and add its children to the fringe

13



Tree search example

14



Tree search example

15



Tree search example

Fringe

16



Search strategies

• A search strategy is defined by picking the order of node 
expansion

• Strategies are evaluated along the following dimensions:
– Completeness: does it always find a solution if one exists?

– Optimality: does it always find a least-cost solution?

– Time complexity: number of nodes generated

– Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of 
– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum length of any path in the state space (may be infinite)

17



Uninformed search strategies

• Uninformed search strategies use only the 
information available in the problem definition

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Iterative deepening search

18



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

19



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

20



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

21



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

22



Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at end

A

D F

B C

E G

23



Properties of breadth-first search

• Complete? 
Yes (if branching factor b is finite)

• Optimal?
Yes – if cost = 1 per step

• Time?
Number of nodes in a b-ary tree of depth d: O(bd)

(d is the depth of the optimal solution)

• Space?
O(bd)

• Space is the bigger problem (more than time)
24



Uniform-cost search
• Expand least-cost unexpanded node
• Implementation: fringe is a queue ordered by path cost (priority 

queue)
• Equivalent to breadth-first if step costs all equal

• Complete?
Yes, if step cost is greater than some positive constant ε

• Optimal?
Yes – nodes expanded in increasing order of path cost

• Time?
Number of nodes with path cost ≤ cost of optimal solution (C*), O(bC*/ ε)
This can be greater than O(bd): the search can explore long paths consisting 

of small steps before exploring shorter paths consisting of larger steps 

• Space?
O(bC*/ ε)

25



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

26



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

27



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

28



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

29



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

30



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

31



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

32



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

33



Depth-first search

• Expand deepest unexpanded node

• Implementation:

– fringe = LIFO queue, i.e., put successors at front

A

D F

B C

E G

34



Properties of depth-first search

• Complete?
Fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
 complete in finite spaces

• Optimal?
No – returns the first solution it finds

• Time?
Could be the time to reach a solution at maximum depth m: O(bm)

Terrible if m is much larger than d
But if there are lots of solutions, may be much faster than BFS

• Space?
O(bm), i.e., linear space!

35



Iterative deepening search

• Use DFS as a subroutine

1. Check the root

2. Do a DFS searching for a path of length 1

3. If there is no path of length 1, do a DFS searching 
for a path of length 2

4. If there is no path of length 2, do a DFS searching 
for a path of length 3…

36



Iterative deepening search

37



Iterative deepening search

38



Iterative deepening search

39



Iterative deepening search

40



Properties of iterative deepening 
search

• Complete?

Yes

• Optimal?

Yes, if step cost = 1

• Time?

(d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space?

O(bd)

41



Informed search

• Idea: give the algorithm “hints” about the 
desirability of different states 

– Use an evaluation function to rank nodes and 
select the most promising one for expansion

• Greedy best-first search

• A* search

42



Heuristic function

• Heuristic function h(n) estimates the cost of 
reaching goal from node n

• Example:
Start state

Goal state
43



Heuristic for the Romania problem

44



Greedy best-first search

• Expand the node that has the lowest value of 
the heuristic function h(n)

45



Greedy best-first search example

46



Greedy best-first search example

47



Greedy best-first search example

48



Greedy best-first search example

49



Properties of greedy best-first search

• Complete?

No – can get stuck in loops

start

goal

50



Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal?

No

51



Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal?

No

• Time?

Worst case: O(bm)

Best case: O(bd) – If h(n) is 100% accurate

• Space?

Worst case: O(bm)

52



A* search

• Idea: avoid expanding paths that are already expensive

• The evaluation function f(n) is the estimated total cost 
of the path through node n to the goal:

f(n) = g(n) + h(n)

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

53



A* search example

54



A* search example

55



A* search example

56



A* search example

57



A* search example

58



A* search example

59



Properties of A*

• Complete?

Yes – unless there are infinitely many nodes with f(n) ≤ C*

• Optimal?

Yes

• Time?

Number of nodes for which f(n) ≤ C* (exponential)

• Space?

Exponential

60



Admissible heuristics

• A heuristic h(n) is admissible if for every node n, h(n)
≤ h*(n), where h*(n) is the true cost to reach the goal 
state from n

• An admissible heuristic never overestimates the cost 
to reach the goal, i.e., it is optimistic

• Example: straight line distance never overestimates 
the actual road distance

• Theorem: If h(n) is admissible, A* is optimal

61



Designing heuristic functions

• Heuristics for the 8-puzzle

h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance (number of squares from 
desired location of each tile)

h1(start) = 8

h2(start) = 3+1+2+2+2+3+3+2 = 18

• Are h1 and h2 admissible? 62



Comparison of search strategies

Algorithm Complete? Optimal?
Time 

complexity
Space 

complexity

BFS

UCS

DFS

IDS

Greedy

A*

Yes

Yes

No

Yes

If all step 
costs are equal

If all step 
costs are equal

Yes

No

O(bd)

Number of nodes with g(n) ≤ C*

O(bm)

O(bd)

O(bd)

O(bm)

O(bd)

No No
Worst case: O(bm)

Yes Yes

Best case: O(bd)

Number of nodes with g(n)+h(n) ≤ C*
63


